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57 ABSTRACT

A virtualization based system comprises a host and a plurality
of'virtual machines that may each comprises a guest memory.
A virtual machine monitor has access to underlying platform
hardware in the system and may control physical resources in
the platform. The platform hardware comprises a processor
and a memory coupled to the processor. Further, the VMM
may manage guest software including guest operating sys-
tems running on the virtual machines. A binary translation
logic may replace guest memory writing instructions corre-
sponding to a hot spot in guest application with translated
codes to generate a mirrored content for the guest memory.
The binary translation logic may combine one or more of the
guest memory writing instructions in a region and keep the
region atomic. The processor may execute the translated
codes in an atomic region together to write a content in the
guest memory and a mirrored content in a mirroring memory.
The VMM may allocate a memory region in the host memory
for the mirroring memory. The guest memory comprises one
or more guest memory pages and the mirroring memory may
comprise one or more mirroring memory pages. The VMM
may add an offset to a virtual address of a guest memory page
to obtain a virtual address of a mirroring memory page. The
VMM may manage or emulate a guest page table comprising
a mapping between virtual address to guest physical
addresses for the guest memory. The VMM may synchronize
a shadow page table with the mapping in the guest page table.
The shadow page table comprises a mapping of virtual
addresses to host physical addresses for the guest memory
and a mapping of virtual addresses to host physical addresses
for the mirroring page. Upon a memory failure in the guest
memory page, the VMM may restore the content of the cor-
rupted guest memory page from the mirroring memory page.

17 Claims, 7 Drawing Sheets
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1
SYSTEM METHOD FOR MEMORY
VIRTUALIZATION CONTROL LOGIC FOR
TRANSLATING VIRTUAL MEMORY IN
SPACE OF GUEST MEMORY BASED ON
TRANSLATED CODES IN RESPONSE TO
MEMORY FAILURE

CLAIM OF PRIORITY

This application is a U.S. National Phase application under
35 US.C. §371 of International Application No. PCT/
CN2011/000555, filed Mar. 31, 2011, entitled “MEMORY
MIRRORING AND REDUNDANCY GENERATION FOR
HIGH AVAILABILITY,” the entire contents of which are
incorporated herein by reference.

BACKGROUND

Virtualization enables a single host machine with hardware
and software support for virtualization to present an abstrac-
tion of machine interface, such that the underlying hardware
of the host machine appears as one or more independently
operating virtual machines. Each virtual machine may there-
fore function as a self-contained platform. Virtualization
technology may be used to allow multiple guest operating
systems and/or other guest software to coexist and execute
apparently simultaneously and apparently independently on
multiple virtual machines while actually physically executing
onthe same hardware platform. A virtual machine may mimic
the hardware of the host machine or alternatively present a
different hardware abstraction altogether.

Virtualization systems may include a virtual machine
monitor (VMM) which may control the host machine. The
VMM provides guest software operating in a virtual machine
with a set of resources (e.g., processors, memory, IO devices).
The VMM may use facilities of hardware virtualization assis-
tance to provide services to a virtual machine and to provide
protection from and between multiple virtual machines
executing on the host machine. The VMM may create virtual
devices, emulated in software in the VMM, which are
included in the virtual machine (e.g., virtual IO devices). The
VMM handles/emulates instructions in software in a manner
suitable for sharing the host machine hardware for the virtual
machines on which the guest software is executing. Examples
of VMM may comprise a hybrid VMM, a host based VMM
and a hypervisor VMM. In the hypervisor architecture, the
VMM may have access to the platform hardware and control
physical resources in the underlying platform.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention described herein is illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
For example, the dimensions of some elements may be exag-
gerated relative to other elements for clarity. Further, where
considered appropriate, reference labels have been repeated
among the figures to indicate corresponding or analogous
elements.

FIG.1is a schematic diagram of a high level structure of an
exemplary virtual machine environment according to an
embodiment of the invention.

FIG. 2 is a schematic diagram of a relationship between a
virtual machine and a host machine in one embodiment.

FIG. 3 is a schematic diagram of page table mechanism
according to an embodiment of the invention.
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FIG. 4 is a schematic diagram of a change in the codes to
provide a mirroring page.

FIG. 5 illustrates a schematic block diagram of a processor
based system.

FIG. 6 illustrates a schematic diagram of a method accord-
ing to an embodiment of the invention.

FIG. 7 illustrates a schematic diagram of a method accord-
ing to another embodiment of the invention.

DETAILED DESCRIPTION

The following description may relate to techniques for
memory failure recovery. The implementation of the tech-
niques is not restricted in computing systems; it may be used
by any execution environments for similar purposes, such as,
for example, any other digital/electronic device. In the fol-
lowing description, numerous specific details such as logic
implementations, opcodes, means to specify operands,
resource partitioning/sharing/duplication implementations,
types and interrelationships of system components, and logic
partitioning/integration choices are set forth in order to pro-
vide a more thorough understanding of the present invention.
However, the invention may be practiced without such spe-
cific details. In other instances, control structures and full
software instruction sequences have not been shown in detail
in order not to obscure the invention.

References in the specification to “one embodiment”, “an
embodiment”, “an example embodiment”, etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Embodiments of the invention may be implemented in
hardware, firmware, software, or any combination thereof.
Embodiments of the invention may also be implemented as
instructions stored on a machine-readable medium, which
may be read and executed by one or more processors. A
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computing device). For example, a machine-
readable medium may include read only memory (ROM);
random access memory (RAM); magnetic disk storage
media; optical storage media; flash memory devices; electri-
cal, optical, acoustical or other forms of propagated signals
(e.g., carrier waves, infrared signals, digital signals, etc.), and
others.

The following description may include terms, such as first,
second, etc. that are used for descriptive purposes only and
are not to be construed as limiting.

FIG. 1 illustrates one embodiment of a virtual-machine
environment 100. In this embodiment, a processor-based
platform 116 may execute a VMM 114 or any other virtual
machine control logic. The VMM, though implemented in
software, may emulate and export a virtual machine interface
to higher level software. Such higher level software may
comprise a standard OS, a real time OS, or may be a stripped-
down environment with limited operating system functional-
ity and may not include OS facilities available in a standard
OS in some embodiments. Alternatively, for example, the
VMM 114 may be run within, or using the services of, another
VMM. VMMs may be implemented, for example, in hard-
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ware, software, firmware or by a combination of various
techniques in some embodiments. The components of the
VMM executing directly on the platform hardware are
referred to herein as host components of the VMM. In another
embodiment, examples of VMM 114 may be a hybrid virtual
machine monitor, a host virtual machine monitor or a hyper-
visor virtual machine monitor.

The platform hardware 116 may be a personal computer
(PC), server, mainframe, handheld device such as a personal
digital assistant (PDA) or “smart” mobile phone, Internet
Protocol device, digital camera, portable computer, handheld
PC such as netbook or notebook or Tablet, or embedded
applications such as a micro controller, a digital signal pro-
cessor (DSP), system on a chip (SoC), network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, or another processor-based system.

The platform hardware 116 includes at least a processor
126 and memory 120. Processor 126 may be any type of
processor capable of executing programs, such as a micro-
processor, digital signal processor, microcontroller, or the
like. The processor may include microcode, programmable
logic or hard coded logic for execution in embodiments.
Although FIG. 1 shows only one such processor 126, there
may be one or more processors in the system in an embodi-
ment. Additionally, processor 126 may include multiple
cores, support for multiple threads, or the like. The processor
126 may include microcode, programmable logic or hard-
coded logic for performing operations associated with vari-
ous embodiments described herein.

Memory 120 may comprise random access memory
(RAM), read only memory (ROM), flash memory, any other
type of volatile memory devices or non-volatile memory
devices, or combination of the above devices, or any other
type of machine medium readable by processor 126 in various
embodiments. Memory 120 may store instructions and/or
data for performing program execution and other method
embodiments. In some embodiments, some elements of the
invention may be implemented in other system components,
e.g., in the platform chipset or in the system’s one or more
memory controllers.

The VMM 114 may present to guest software an abstrac-
tion of one or more virtual machines. The VMM 114 may
present the same or different abstractions of VMs to the
various guest software. FIG. 1 shows two virtual machines,
102 and 112. Guest software such as guest software 103 and
113 running on each virtual machine may include a guest OS
such as a guest OS 104 or 106 and various guest software
applications 108 and 110. Guest software 103 and 113 may
access resources (e.g., processor registers, memory and /O
devices) within the virtual machines on which the guest soft-
ware 103 and 113 is running and to perform other functions.
For example, the guest software 103 and 113 may have access
to all registers, caches, structures, /O devices, memory and
the like, according to the architecture of the processor and
platform presented in the virtual machine 102 and 112.

In one embodiment, in response to a virtual processor 102
referencing a memory location in its virtual address space, a
reference to an actual address in the physical memory of the
host machine 116 (or machine physical memory) may be
generated by memory virtualization management logic 130,
which may be implemented in hardware (sometimes incor-
porated into the processor 126, e.g., memory management
unit (MMU)) and/or software and/or firmware. For example,
memory virtualization management logic 130 may translate
from virtual address to physical address for a memory page.
Memory virtualization management logic 130, among other
functions, may map a location in the virtual memory space of

20

30

35

40

45

4

the guest machine to a location in physical memory address
space of the host machine. In the example of FIG. 1, the
memory virtualization management logic 130 may among
other functions map from virtual memory space to physical
memory space. The physical memory may be divided into
parts such as pages that may be interleaved with pages from
other processes in physical memory. While the example of
FIG. 1 comprises memory virtualization management logic
130, in some embodiments, one or more control logics may be
utilized to realize the memory virtualization management
logic 130.

The memory virtualization management logic 130 may
perform address translation, for example, the translation of a
virtual address to a physical address, based on any memory
management technique, such as paging. The memory virtu-
alization management logic 130 may refer to one or more data
structures stored in processor 126, memory 120, any other
memory devices or any other storage locations in the platform
hardware 116 and/or any combination of these components
and locations. For example, the data structures may comprise
page directories and page tables. The memory virtualization
management logic 130 may utilize a page table that com-
prises amapping from a first address to a second address, e.g.,
for a memory page. For example, the memory virtualization
management logic 130 may translate from virtual memory
address of a guest machine to linear memory address (such as
in Intel x86 architecture), which may further be translated to
physical memory address of host machine, e.g., based on a
physical page table. In another embodiment, memory virtu-
alization management logic 130 may directly translate from
virtual memory address into physical memory address of host
machine based on a physical page table, such as for Intel
Itanium® architecture that may not have segmentation
mechanism or x86 architecture with segmentation disabled.
As used herein, the term ““virtual memory address” may
include any address referred to as first address that may be
used as input address to be translated to a second address host
physical memory address. For example, “virtual memory
address” may include any address referred to as a logical or a
linear address depending on, e.g., processor architecture.

FIG. 2 depicts a relationship between one or more virtual
machines executing on a host machine with regard to the
mapping of guest memory in one embodiment. FIG. 2 illus-
trates how guest-physical memory is remapped through the
virtualization system of the host machine. A virtual machine
such as virtual machine 202 may present a virtual processor
206 to guest software running on the virtual machine 202. The
virtual machine 202 may provide an abstraction of physical
memory to the guest operating system or other guest soft-
ware, guest-physical memory 204. As guest software
executes on the virtual machine 202, it is actually executed by
the host machine 212 on host processor 216 utilizing host-
physical memory 214.

As shown in FIG. 2, in one embodiment, guest-physical
memory 204 (which may be presented as a physical memory
space starting at address 0 in virtual machine 202) is mapped
to some contiguous region 218 in host-physical memory 214.
If'the virtual machine 202 is assigned 256 MB of memory, one
possible mapping might be that virtual machine 202 is
assigned a range of 128-384 MB. Although FIG. 2 illustrates
an example of a virtual machine, some embodiments may
have one or more virtual machines. For example, a guest-
physical memory in each virtual machine may be mapped to
a different portion of host-physical memory 214 and each
virtual machine may reference a guest-physical address space
0f'0-256 MB. As shown in FIG. 2, the host machine 212 may
have 1024 MB of host-physical memory. The VMM may be
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aware that each virtual machine’s address space that maps to
different portions of the host-physical address space.

In a more general embodiment, memory may be segmented
or divided into several parts such as pages. Each page may
contain a known amount of memory, e.g., based on processor
architecture requirement, varying across implementations,
e.g. a page may contain 4096 bytes of memory, 1 MB of
memory, or any other amount of memory as may be desired
for an application. For example, memory virtualization man-
agement such as 130 of FIG. 1 may support to segment the
guest-physical memory 204 or the host-physical memory 214
into several pages of 4,096 (“4K”) bytes each. The memory
virtualization management logic 130 may map a page in a
virtual memory to a page in host physical memory. Memory
virtualization management logic 130 may use a page table or
other data structure to specify the physical page location
corresponding to a guest space physical page location.

The virtual machines and memory mapping shown in FIG.
2 are only one representation of one embodiment, in other
embodiments, the actual number of virtual machines execut-
ing on a host machine may vary from one to many; the actual
memory sizes of the host machine and the virtual machines
may vary and be variable from virtual machine to virtual
machine. The example depicts a contiguous allocation of
memory to virtual machines; however, in some embodiment,
the view of guest physical memory may not necessarily limit
to be contiguous. In another embodiment, the guest physical
address may not always start from address 0 MB. Embodi-
ments of the invention may be used with systems containing
more or less memory, and configured to operate on larger or
smaller pages. The physical-memory pages allocated to a
virtual machine may not be contiguous and might be distrib-
uted in the host-physical memory 214 interleaved with each
other and with pages belonging to the VMM and to other host
processes.

In one embodiment, runtime memory failure on the plat-
form hardware may influence, e.g., reliability, serviceability
and availability (RAS) of the platform. Hardware enhance-
ment to memory architecture may provide certain level of
enhanced RAS by correcting n-bit error with memory redun-
dancy of n+1 bits per unit such as per cache line redundancy.
However, memory failure may happen to a block of memory
or several clustered blocks or with equal or more than n+1 bit
error in one unit, which may not be recovered by hardware
itself. Further, in a virtualized environment, although the
memory failure, e.g., hareware un-recoverable, may be
directed to guest OS for further processing, e.g., to contain the
failure inside limited processes, the service running in guest
may have to be aborted.

Software based virtual machine (VM) level fault tolerance
such as VM log-and-replay or VM checkpoint may enhance
RAS by generating a backup VM in case of hardware failure.
VM log-and-replay and VM checkpoint may require dupli-
cation ofthe platform resources, e.g., processor, memory, I/O,
for VM backup, and VMM intervention to the execution of
VM.

Referring to FIG. 2, in an embodiment, a hypervisor such
as VMM 114 of FIG. 1 may allocate a contiguous region in the
host physical memory 214 for a mirroring memory 220 that
mirrors physical memory 218 that is mapped to the guest-
physical memory 204. The mirroring memory 220 may com-
prise one or more memory pages that are the same as or have
the same content as the corresponding pages in the mapped
physical memory 218. For example, the mirroring memory
220 may have a one to one redundancy configuration for the
guest-physical memory 204. In another embodiment, the sys-
tem may implement n to 1 redundancy configuration (for
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increased availability), e.g., by generating n bytes mirroring
memory or n byte redundancy for one byte guest memory,
wherein n is positive integer that is bigger than or equal to 1.
In another embodiment, the system may implement n pages
mirroring memory for one page guest memory, or in any unit
otf’block to generate n blocks mirroring memory per one block
guest memory. In some embodiments, the VMM 114 may
send to the guest OS executing on the virtual machine 202 a
request to cooperatively allocate redundant memory to mirror
the guest-physical memory 204, e.g., by paravirtualization.
The guest OS may allocate the redundant memory, e.g., by
using memory balloon driver. The example depicts an
embodiment of contiguous allocation of the mirroring
memory. Embodiments of the invention may be used with
systems containing more or less memory, and configured to
operate on larger or smaller pages. The physical-memory
pages allocated to a mirroring memory may not be contiguous
and might be distributed in the host-physical memory 214
interleaved with each other and interleaved with pages
belonging to the VMM and to other host processes.

FIG. 3 shows one example of page table mechanism used to
translate or compute a physical address from virtual address.
Examples of page table format may comprise instruction set
architectures, e.g., the Intel Itanium Architecture, 32-bit,
64-bit and other variations such as Physical Address Exten-
sion (PAE)/Page Size Extensions (PSE) of the x86 architec-
ture, among many others, and to other configurations. In some
embodiments, the page table mechanism may comprise one
page table for the whole system, a separate page table for each
application, a separate page table for each segment, or some
combination of these. The page table may be implemented as
a tree-like page tables, a clustered hash page table, or even
linear array etc. The page table may comprise one or more
levels in some embodiments.

Guest software executing on each virtual machine may
reference to a guest virtual address may be translated to a
guest physical memory address based on a guest page table,
e.g., inthe guest. In another embodiment, the processor in the
host machine may translate the guest virtual address to host
physical memory address, by using a page table managed by
VMM. In one example, for the translation, the VMM may use
a host physical page table, e.g., a shadow page table. The
shadow page table may synchronize with the guest page table
for semantics in VMM. In another embodiment, the VMM
may use a single host-physical page table such as a direct page
table in, e.g., Xen paravirtualization, by cooperatively work-
ing with guest OS to hold the real translation information
(e.g., from virtual address to host physical address). In this
embodiment, a virtual machine may not have a guest page
table in the guest physical memory, e.g., 302. The VMM may
emulate a guest page table for the guest OS based on the
host-physical or direct page table. In this embodiment, the
guest OS may get knowledge of the emulated guest page table
with additional data structure such as machine-to-guest-
physical and guest-physical-to-machine page mapping.

Referring to FIG. 3, the guest-physical memory 302 may
store a guest page table structure 350. The guest page table
structure 350 may comprise a mapping between guest physi-
cal address and guest physical address. In the example of
FIG.3, the guest page table structure 350 may comprise a
guest directory table 304 and a guest page table 306. In some
embodiments, any other format of data structures may be
utilized by the guest software, e.g., memory management
mechanism active in the guest (e.g., configured by the guest
O8), to translate the guest virtual addresses to the guest physi-
cal addresses. For example, in one embodiment, the directory
table 304 may store a directory entry 330 that may point to a
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base of the page table 306. Information from the guest page
directory table 330 may comprise a base address of the page
table 306. The page table 306 may comprise a page table entry
332. Information from the page table entry 332 may comprise
a base address of a guest physical page (not shown) being
accessed by the guest software. In one embodiment, in
response to the guest software executing a process to refer-
ence to a guest virtual address, e.g., represented by X0, the
guest software may use the guest page table structure 350 to
translate the guest physical address X0 to a guest physical
address (e.g., GPX0) within the corresponding guest physical
page (e.g., represented by GPNO) being accessed. For
example, the base address of the guest physical page, derived
from page table entry 332, may be combined with appropriate
bits of the guest physical address X0 to form the guest physi-
cal address GPX0.

Referring to FIG. 3, the hypervisor 312 may maintain a
shadow page table structure 360 that is a shadow version of
the guest page table structure 350. The shadow page table
structure 360 may store a mapping between guest virtual
addresses and host physical addresses. In the embodiment of
FIG. 3, the shadow page table structure 360 comprises a
shadow page directory table 314 that may point to a first
shadow page table 316, which may synchronize with guest
page table 306, and a second shadow page table 318, which
may include a mapping for the mirroring memory 308. The
shadow page directory table 314 may comprise a first direc-
tory table entry 340 that comprises a base address of the first
shadow page table 316. The first shadow page table 316
comprises a first shadow page table entry 346 to point to a
base (e.g., a base address) of a host physical page (e.g.,
represented by HPNO) being accessed inresponse to the guest
machine referencing the corresponding guest virtual address
X0. The hypervisor 312 may utilize the directory table 314
and first page table 316 to translate the guest virtual address
X0 to the host physical address (e.g., HPXO0) of the host
physical page HPNO. For example, the hypervisor 312 may
use the base address of the host physical page HPNO and
appropriate bits of the guest virtual address X0 for the trans-
lation.

FIG. 3 illustrates an embodiment of one or more mirroring
pages 308 (e.g., represented by MHPNO, 1 . . . n) that mirrors
the original mapped host physical page HPNO for guest page
GPNO in a one to one mirroring configuration or a multiple to
one mirroring configuration. The hypervisor may maintain a
relationship to map from GPNO to HPNO and MHPNO. The
one or more mirroring pages 308 may be allocated in the host
physical memory by the hypervisor 312 or in cooperation
with the guest software (e.g., guest OS) executing on the guest
machine. The hypervisor 312 may store a mapping between a
guest virtual address and the host physical address of the
mirroring page(s) 308 in the shadow page table structure 360.

In one embodiment, the mirroring page(s) 308 may have
the guest virtual address X1 that is an offset to the guest
virtual address X0, e.g., X1=X0+mirror_offset, herein mir-
ror_offset is an offset value that is used to form the guest
virtual address X1 of a mirroring page 308. In one embodi-
ment, the mirror_offset may have a fixed value; however, in
some embodiments, the hypervisor 312 and/or a binary trans-
lation agency (that will be mentioned with regard to FIGS. 4
and 5) may utilize a predetermined policy to generate the
mirror_offset that may be variable. In some embodiments,
other policy may be used to position a mirroring page. In the
embodiment of nto 1 minoring, the above may be performed
a plurality of times to generate one or more translations for
each k” minoring (k=1 . . . n).
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The shadow page table structure 360 may further comprise
a mapping between guest virtual addresses and host physical
addresses for mirroring pages in a minoring memory space.
For example, the shadow page directory table 314 may com-
prise a shadow directory table entry 342. The content of the
shadow page table entry 342 comprises a base address of the
second shadow page table 318 that is used for the mirroring
memory. The second shadow page table 318 may comprise a
shadow page table entry 348 that may point to a base of a page
in the mirroring pages 308. Information from the shadow
page table entry 348 may comprise a base address of the
mirroring pages 308. In one embodiment, the hypervisor 312
may use the base address of a page in the minoring pages 308
and appropriate bits in the guest virtual address X1 of the page
in the mirroring pages 308 to obtain a host physical address of
the page in the mirroring page 308 being accessed actually by
the host machine or a corresponding host processor.

The page table mechanism 350 and shadow page table
mechanism 360 shown in FIG. 3 is only one representation of
one embodiment. While FIG. 3 shows two separate shadow
page tables 316 and 318 for mapped host physical pages and
mirroring pages, respectively, in some embodiments, the
shadow page tables 316 and 318 may be integrated in the
same shadow page table. In another embodiment, the guest
page table and shadow page table may be 2, 3 or 4 level page
table or with more levels. In some embodiments, the page
table mechanism and shadow page table mechanism may
have a different hierarchy or structure as mentioned above.
For example, the guest page table may be 2 level page tables,
while the shadow page tables 316 and 318 may be configured
as 3 level or 4 level page tables.

While FIG. 3 illustrates an embodiment of a shadow page
table; in some embodiments, a direct page table may be
utilized, wherein, e.g., the guest may not have an instance of
guest page table. In the embodiment of direct page table, the
guest may still have a “view” of its page table (e.g., operated
through read/write API to the page table contents) which may
be emulated by VMM 312 based on the direct page table. For
example, the “view” of guest page table may be referred with
regard to the guest page table 350 in FIG. 3.

FIG. 4 is a schematic diagram of a change in the codes or
instructions to provide a minoring page. The embodiment of
FIG. 4 illustrates original codes 412 of guest software on a
guest machine. The original codes 412 may be stored in a
guest memory. A binary translation (BT) layer or any other
translation logic (e.g., BT layer 512 of FIG. 5) in a hypervisor
may perform a translation on the original codes 412. In some
embodiments, the BT translation layer 512 may perform vari-
ous translations such as binary translation and optimization
on the original codes 412; in some embodiments, the trans-
lation made by the BT translation layer 512 may not change
some original codes. In the example of FIG. 4, the original
codes 412 may be combined into one or more code blocks
such as code block 414 and 416; however, in some embodi-
ments, the original codes 412 may not be combined. In one
embodiment, code block 414 may comprise one or more
instructions.

Numerical reference 418 may refer to a guest memory
write instruction 418. In one embodiment, the write instruc-
tion 418 may refer to a memory store instruction, e.g., “mov”
instruction in Intel® 64 and IA-32 architectures. In another
embodiment, examples of the write instruction 418 may com-
prise any instructions for memory store and/or processor
internal state change, e.g., “push”, “call”, “ret”, “iret”,
“stosb”, “smovsb” instructions such as in Intel® 64 and
1A-32 architectures, or similar instruction in any other archi-
tectures that may modify contents of memory. In yet another
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embodiment, examples of the write instruction 418 may com-
prise instructions that may use, e.g., floating point registers to
modify memory state and/or processor internal state. The
instruction 418' and/or 428 may use any write instruction
support by the architecture of the. In another embodiment, the
instruction 428, 418' and 418 may use same write instruction
or different write instructions.

The BT layer 512 may translate the guest memory write
instruction 418 into two translated write instructions 418' and
428 in the embodiment of 1 to 1 mirroring, and may translate
the guest memory write instruction 418 into a plurality of
(e.g., n) translated write instructions in the embodiment of n
to 1 mirroring. The translated write instruction 418' may
access the same guest memory location or address as the
original guest memory write instruction 418. For example, as
shown in FIG. 4, the translated code 418' may write “D0” in
the address “[addr]”, e.g., X0 in the embodiment of FIG. 3. In
the embodiment of FIG. 2, the content “D0” may be written to
the address 232 in the mapped host physical memory space
218.

Referring to FIG. 4, the translated code for the guest
memory write instruction 418 may further comprise an addi-
tional write instruction 428 to write the content “D0” in an
address “[addr+R]”, e.g., X1 in the embodiment of FIG. 3,
wherein “R” represents an offset to the original address
“laddr]”. In response to the translated code 428, the content
“D0” written or to be written in the address “[addr|” may be
mirrored to the address “[addr+R]”. In another embodiment,
the content “D0” may be mirrored to one or more mirroring
addresses, e.g., by using a plurality of mirroring data write
instructions 428. In one embodiment, the offset “R” may have
a fixed value; however, in some embodiments, the offset may
not be fixed and/or other policy may be used to form a mir-
roring memory. In the embodiment of FIG. 2, the content
“D0” is shown as written in the address 234 of the mirroring
memory space 220. In some embodiments, the content “D0”
may be written in a plurality of address of the mirroring
memory space 220 in the host physical memory 214.

The BT layer may combine translated codes for one or
more guest memory write instructions together to form a
translated code (TC) block such as TC blocks 424 and 426. In
one embodiment, the BT layer may mirror memory in
response to each guest memory write in a TC block. In
another embodiment, the BT layer may update the mirroring
memory in response to each TC block. In either embodiment,
the BT layer 512 may keep each TC block atomic and may
undo the one or more write operations in the whole TC block.
When a memory failure happens within the TC block before
the mirroring memory and the guest memory are both
updated in response to executing the TC block, the hypervisor
510 may inform BT layer 512 to re-execute the whole opera-
tion of the TC block from the beginning of the TC block. The
translated codes may be stored in a translation cache such as
translation cache 516 of FIG. 5; in some embodiments, the
translated codes may be stored in processor 126, memory
120, any other memory devices or any other storage locations
in the platform hardware 116 and/or any combination of these
components and locations. In some embodiments, the trans-
lated codes may include codes that may be changed based on
the translation made by the BT layer 512 and/or codes that
may not be changed after the translation made by the BT layer
512. In some embodiments, the BT layer may only combine
translated instructions corresponding to write instructions
into one or more TC blocks; in some embodiments, the
instructions combined into the TC blocks may not be write
instructions.
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In another embodiment, the BT layer may modify trans-
lated codes to perform a comparison of the contents in
memory addresses for the original guest memory and the
mirroring memory after executing the memory write instruc-
tion and mirroring memory write instruction(s) to verify the
writes have been executed correctly; however, in some
embodiments, the comparison may not be necessary.

In the example as shown in FIG. 4, translated codes for an
original guest memory write instruction may be executed
earlier than executing translated codes for writing a mirroring
memory for simplicity in description; however, in some
embodiments, a different order may be implemented, e.g., the
translated codes may not write the guest memory earlier than
the mirroring memory.

FIG. 5 illustrates a block diagram of an embodiment of a
processor based system. The system 500 comprises a system
memory 502, in which guest OS 504 and application 506 or
other guest software and applications running on a virtual
machine may be stored. The system 500 may further com-
prise a VMM such as a hypervisor 510 or any other virtual
machine control logic that may be resident in the system
memory 502 or any other location. The hypervisor 510 may
comprise a binary translation (BT) layer or logic 512. While
FIG. 5 illustrate an embodiment of using BT layer 512 in the
hypervisor 510, in some embodiments, any other translation
layer or logic may be utilized by the hypervisor 510. The
hypervisor 510 may comprise a memory virtualization con-
trol logic 513. For example, the description on the memory
virtualization control logic 513 may refer to the embodiments
as mentioned above with regard to the memory virtualization
management logic 130.

The BT layer 512 may comprise a region former 514 and a
translator 516. The translator 516 may perform a binary trans-
lation or any other translation and/or optimization on original
codes to generate translated codes 540. In one embodiment,
the translator 516 may further generate translated codes or
one or more memory write instruction to mirror data written
or to be written for each guest memory write to a mirroring
memory. The translated codes may be formed one or more
translated code blocks or in any other combination format by
the region former 514. The translated code blocks may be
stored in a translation cache. The region former 514 may keep
the translated code block as an atomic region. In another
embodiment, the translated codes for the mirroring memory
writes may further be stored in one or more internal buffers
(not shown) in the processor of the platform hardware 520
and may be invisible to the system memory 502 and/or hard-
ware acceleration for binary translation 522. In some embodi-
ments, hardware acceleration may not be necessary or in any
other format, the binary translation or other translation sup-
ports may be implemented in hypervisor.

The translated codes such as one or more translated code
blocks may be stored (e.g., by the hypervisor) in a translation
cache 516 in the hypervisor 510 or any other location in the
system. The platform hardware 520 may comprise a jump
table 524. In response to the translated codes being stored in,
e.g., translation cache 516, the jump table 524 may comprise
a mapping between original memory addresses correspond-
ing to the original codes and translation cache addresses for
the translated codes. In response to the platform hardware 520
such as a processor or any other execution logic executing
original codes pointed to by an original memory address in
the jump table, the processor or any other execution logic may
jump to a corresponding translation cache address based on
the jump table and execute the translated codes in the trans-
lation cache address. In one embodiment, the platform hard-
ware 520 may comprise a micro code generating logic 526
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that may further translate translated codes 540 into any other
formats of micro codes to support various instructions micro-
code backend; however, in some embodiments, the transla-
tion from the translated codes 540 to other micro codes may
not be necessary. In one embodiment, micro codes from the
micro code generating logic 526 may be executed by the
processor or any other execution logic in the platform hard-
ware 520.

Referring to FIG. 5, the platform hardware 520 may com-
prise a self-modifying code (SMC) logic 528 to provide a
self-code modifying function in the platform hardware; how-
ever, in some embodiment, the SMC logic 530 may not be
necessary. The platform hardware 520 may further comprise
a commit buffer 530. The commits of all memory writes in
every atomic region may happen at the end of the execution of
the atomic region. For example, in response to the processor
executing memory write instructions in an atomic region, all
the write instructions in the atomic region may be stored in
one or more internal buffers in the processor and the proces-
sor may execute the write instructions together or substan-
tially simultaneously after all the write instructions are stored
in the buffers. In response to the memory write instructions in
an atomic region being executed, a corresponding execution
result may be provided to one or more status registers or
control registers in the processor, such as RAX, RBX, RCX,
etc. In one embodiment, the BT layer 512 may, among other
ways, utilize the hardware feature of restricted transactional
memory in the underneath hardware 520 to ensure a trans-
lated code block as an atomic region.

In response to a memory failure, the processor may notify
machine check exception (MCE) handler (not shown) in
VMM (512 or 510 up to implementation). The MCE handler
may take the control and identify the corrupted memory page
based on the information provided by the processor such as
the error physical address (e.g., EHPN1). If a corrupted page
is within guest pages, hypervisor 510 may offline or disable
the corrupted page and allocate a new page to backup the
corrupted memory page. Hypervisor 510 may modify the
mappings used for the guest such as the shadow page table or
direct page table pointing to the new page, and/or any other
machine-to-guest-physical page mapping data structure,
guest-physical-to-machine page mapping data structure and/
or machine-to-mirroring page mapping data structure. The
hypervisor 510 may look up the machine-to-guest-physical
page mapping data structure to determine the error guest
physical page (e.g., EGPN1), or it may search in the guest-
physical-to-machine page mapping data structure to deter-
mine the EGPN1. The hypervisor 510 may use the guest-
physical-to-minoring page mapping data structure to
determine the minoring host page number (MHPN1) for the
EGPN1. In another embodiment, the hypervisor may directly
use the machine-to-mirroring page mapping data structure to
determine the minoring host page number (MHPN1). In
response to determining the MHPN1, the hypervisor 510 may
restore the contents of the guest memory from the mirroring
page (MHPN1), and inform the BT layer 512 to continue
execution if the mirroring memory is updated with latest data.
In another embodiment, the hypervisor 510 may discard the
current TC block operation to re-execute the TC block if
mirroring memory is not updated or BT layer 512 may undo
the previous one or more write operations. If the corrupted
page is within a minoring page, the hypervisor 510 may use a
new page to replace the corrupted minoring page and restore
the content of the minoring page from the original mapped
physical page, e.g., 218. While the hypervisor of FIG. 5 is
implemented by a plurality of separate logic, in some embodi-
ments, the plurality of logic may not be integrated in one or
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more logic or modules. In some embodiments, the logic in the
hypervisor of FIG. 5 may be realized by software, hardware,
firmware and/or any combination of them or may be imple-
mented the hardware platform.

The flowchart of FIG. 6 depicts execution of guest appli-
cation in one embodiment. The execution begins at 604. The
processor may combine one or more writes in original codes
in the guest application into a code block, e.g., via a region
former in the binary translation layer. The processor may
utilize hardware feature of restricted transaction memory
underneath the binary translation layer to form the code block
as an atomic region. In block 606, the processor may trans-
late, e.g., via the translator 516, the original codes into binary
translated codes that may be stored in a translation cache. In
another embodiment, the processor may perform any other
translation or optimization on the original codes.

Referring to FIG. 6, in block 606, the processor, e.g., via a
translator 516, may further translate each write instruction in
the atomic region to generate a first translated write instruc-
tion that is binary translated and a second translated write
instruction that writes the mirroring memory. The first trans-
lated write instruction and the second mirroring memory
write instruction may write the same content in the guest
memory (e.g., a guest memory page) and the mirroring
memory (e.g., a mirroring memory page), respectively, or
copy the content written or to be written to the guest memory
in the mirroring memory. The second translated write instruc-
tion itself may be binary translated by the processor. In some
embodiments, the atomic region may be formed in response
to the original codes being translated in block 606.

In block 608, the processor may generate a jump table that
comprises a mapping between original guest memory
addresses corresponding to the original codes and translation
cache addresses for the translated codes. The jump table may
comprise one or more records or entries that may each map an
original guest memory address to a translation cache address.
In one embodiment, the jump table may provide an index for
each record in the jump table. In response to the execution of
the guest application reaching a guest memory address in the
jump table, the processor may jump to the translation cache
and access a corresponding translation cache address to
obtain the translated codes relating to the translation cache
address (block 610). In block 612, the processor via such as a
micro-code generating logic may further translate the
obtained translated codes into micro-codes with the format
that is supported by the processor. In block 614, the processor
or any other execution logic may execute the micro-codes. In
block 616, the processor may return the execution result to the
guest application. The result may comprise status information
and/or control information relating to the execution of the
translated codes. For example, the status information and the
control information may be stored in one or more control/
status registers. In one embodiment, the flow may continue to
execute the guest application based on the status information
and the control information.

The flowchart of FIG. 7 depicts execution of restore a
corrupted memory page in one embodiment. In block 702, the
processor may execute guest codes based on one or more
guest applications in a guest OS. In one embodiment, the
processor may jump to execute translated guest codes based
on a translation code address in a jump table. In response to a
memory failure during the execution of the translated codes,
the processor may detect the memory failure (block 704). The
processor may send information relating to the memory fail-
ure to MCE handler or any other control logic that may be
provided in VMM or hypervisor. In one embodiment, the
MCE handler may be implemented by software, hardware,
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firmware or any combination thereof. The MCE handler may
take control in response to receiving the memory failure
related information from the processor (block 706). The
information may indicate that the memory failure happens in
the guest code. The information may indicate a corrupted
memory page, e.g., 2a memory location of the corrupted page.
In one embodiment, the MCE handler may identify the cor-
rupted memory page from the information. In block 708,
VMM may offline or disable the corrupted memory page and
allocate a new memory page to replace the corrupted memory
page, e.g., via memory virtualization management logic in
VMM.

In block 710, if the failure happens in the guest memory,
VMM may restore content of the corrupted page from the
mirroring memory. In one embodiment, VMM may inform
the BT layerto undo the execution of a current TC block, copy
the contents from mirroring page to the new memory page to
restore the content of the corrupted guest memory page, and
re-execute the current TC block. Referring again to FIG. 4, in
another embodiment, if the execution of a TC block has
updated both the guest memory page and the mirroring page,
e.g., both instructions 418' and 428 have been executed, or if
the execution of a TC block has not updated either the guest
memory or the mirroring memory, e.g., before the execution
of instruction 418' or 428, the VMM may copy the contents
from the mirroring page to the new memory page, and con-
tinue the execution of the TC block. In yet another embodi-
ment, if the execution of a TC block has updated a guest
memory address, but has not updated the mirroring address,
e.g., instruction 418' has been executed, but instruction 428
has not been executed, VMM may copy the contents from the
mirroring page to the new memory page, re-execute instruc-
tion 418' and execute 428. In still another embodiment, if the
execution of a TC block has updated the guest memory
address, but has not updated the mirroring memory address,
e.g., instruction 418' has been executed, but instruction 428
has not been executed, VMM may complete execution of the
current TC block, e.g., the instruction 428 and copy the con-
tents from the updated minoring page to the new memory
page in response to the completion of the current TC block. In
another embodiment, if the execution of a TC block has
updated one memory address, but has not updated the second
memory address, e.g., one of instructions 418' and 428 has
been executed, VMM and/or BT layer may determine which
address has been updated, and which address has not been
updated. If the mirroring address has been updated, VMM
may copy the contents from mirroring page to the new
memory page and continue execution.

In block 712, the processor may continue to execute a next
translation code block or subsequent translated codes (block
712). Then, the processor may continue the execution of the
guest OS. Similarly, in response to determining that the mir-
roring memory has a corrupted page, the VMM may allocate
a new page for the corrupted minoring page and restore the
content of the corrupted minoring page from the correspond-
ing guest page. The flow to recover guest memory failure and
the flow to recover minoring memory failure may refer to the
embodiments as mentioned above with regard to block 710.
For example, if the execution of a TC block has updated one
memory address, but has not updated the second memory
address, e.g., instruction 418" has been executed, but instruc-
tion 428 has not been executed, VMM and BT layer may
determine which address has been updated, and which has
not. If the guest memory address has been updated, VMM
may copy the contents from guest page to the new memory
page to recover the failure in the mirroring memory and
continue execution.
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While the methods of FIGS. 6 and 7 are illustrated to
comprise a sequence of processes, the methods in some
embodiments may perform illustrated processes in a different
order. While the methods of FIGS. 6 and 7 are described based
ona configuration of one minoring page mapping to one guest
page, the spirits of FIGS. 6 and 7 may be utilized for a
configuration of n mirroring page mapping to one guest page.
For example, the VMM may use content from one of mapped
mirroring pages to recover the memory failure in the guest
page. In another embodiment, the VMM may utilize the con-
tent of a guest page to recover the memory failure in one or
more mirroring pages in the n to 1 configuration.

While the embodiment of FIG. 7 illustrates an example of
a TC block wherein e.g., instruction 418' is executed before
instruction 428, in some embodiments, the flow of FIG. 7 may
be applied similarly a TC block wherein, e.g., instruction 418'
is executed after instruction 428. If the memory failure hap-
pens in the guest memory, VMM may similarly allocate a new
guest memory page for the corrupted guest memory page. In
one embodiment, VMM may inform the BT layer to undo the
execution of current TC block, copy the contents from minor-
ing page to the new memory page to restore the content of the
corrupted guest memory page, and re-execute the current TC
block. In another embodiment, if both instructions 418' and
428 have been executed, or if none of instruction 418" and 428
has been executed, the VMM may copy the contents from the
mirroring page to the new memory page, and continue the
execution of the TC block. In yet another embodiment, if
instruction 428 has been executed but 418' has not been
executed, VMM may copy the contents from the minoring
page to the new memory page and continue the execution of
the TC block from 418'. In still another embodiment, if
instruction 428 has been executed but instruction 418" has not
been executed, VMM may complete execution of the current
TC block, e.g., from 418' and copy the contents from the
updated mirroring page to the new memory page in response
to the completion of the current TC block. In another embodi-
ment, if the execution of a TC block has updated one of the
guest and minoring memory address, e.g., one of instructions
418' and 428 has been executed, VMM and/or BT layer may
determine which address has been updated and which has not.
If the minoring address has been updated, VMM may copy
the contents from minoring page to the new memory page and
continue execution.

While certain features of the invention have been described
with reference to embodiments, the description is not
intended to be construed in a limiting sense. Various modifi-
cations of the embodiments, as well as other embodiments of
the invention, which are apparent to persons skilled in the art
to which the invention pertains are deemed to lie within the
spirit and scope of the invention.

What is claimed is:

1. An apparatus, comprising:

a memory virtualization control logic to translate from a
first virtual memory address in the virtual address space
of a guest indicated in a first guest memory writing
instruction to a first physical memory address in a host
address space of a host; and

a translation logic to translate the first guest memory writ-
ing instruction into a first set of translated codes that are
to store a first content in the first physical memory
address and to store the first content in a second physical
memory address in the host that is a mirroring address
for the first physical memory address, complete the
execution of the first set of translation codes in response
to amemory failure in the first physical memory address
during the execution of the first set of translated codes,
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and copy the content of the second physical memory
address to the first physical memory address.

2. The apparatus of claim 1, wherein the memory virtual-
ization control logic is further to translate the first virtual
memory address to a guest physical address based on a guest
page table.

3. The apparatus of claim 2, wherein the memory virtual-
ization control logic is further to:

translate the first virtual memory address to the first host

physical memory address based on a physical page table
that is synchronized with the guest page table;

add an offset on the first virtual memory address to gener-

ate a second virtual memory address; and

translate the second virtual memory address to the second

host physical memory address based on the physical
page table.

4. The apparatus of claim 3, wherein the memory virtual-
ization control logic is further to:

emulate the guest page table to the guest base on the physi-

cal page table.

5. The apparatus of claim 1, wherein the translation logic is
further to:

translate the second guest memory writing instruction

relating to a second virtual memory address of the guest
into a second set of translated codes that are to store the
second content in a third physical memory address cor-
responding to the second virtual memory address and to
store the second content in a fourth physical memory
address of the host that is a mirroring address for the
third physical memory address; and

form an atomic region that comprises the first set of trans-

lation codes and the second set of translation codes.

6. The apparatus of claim 1, wherein the translated codes
are further to copy the content into a plurality of mirroring
memory address in the host.

7. The apparatus of claim 5, wherein in response to a
memory failure in the first physical memory address during
the execution of the translated codes in the atomic region, the
translation logic is further to undo the execution of the trans-
lated codes.

8. The apparatus of claim 5, wherein in response to a
memory failure in the first physical memory address during
the execution of the translated codes in the atomic region, the
VMM is further to allocate a new physical memory page for
the corrupted first physical memory page to restore the con-
tent of the corrupted first physical memory page from the
second physical memory page, and further continue the
execution of the translation codes in the atomic region.

9. The apparatus of claim 1, wherein the VMM is further to
offline the corrupted memory page corresponding to the first
physical memory address and allocate a new page to replace
the corrupted memory page.

10. A method, comprising:

forming original codes for writing guest memory into an

atomic region;

translating the original codes into translated codes that are

to write the guest memory and a host mirroring memory
for the guest memory;

executing the translated codes in the atomic region to write

the same content into the guest memory and the host
mirroring memory;

continuing the execution of the translated codes to update

the guest memory and the host mirroring memory, in
response to a memory failure in the guest memory dur-
ing the execution of the translated codes; and
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copying a content of the updated host mirroring memory to
the guest memory with the memory failure to recover the
content of the guest memory.

11. The method of claim 10, further comprising:

generating a mapping comprising a translation from a vir-
tual memory address of the guest memory to a host
physical memory address; and

adding an offset to the virtual memory address to generate
an offset virtual address for the host mirroring memory;
and

updating the mapping to generate a translation from the
offset virtual address to a physical memory address of
the host mirroring memory.

12. The method of claim 10, further comprising:

completing the execution of the translated codes in the
atomic region, in response to a memory failure in the
guest memory during the execution of the translated
codes;

copying a content of the host mirroring memory that is
updated based on the translation codes to the corrupted
guest memory to recover the content of the corrupted
guest memory.

13. A system, comprising:

a memory;

a virtual machine control logic to translate a guest memory
updating instruction into a first instruction to update a
guest memory page of a guest and a second updating
instruction to update a mirroring memory page in a host
that is corresponding to the guest memory page, allocate
a new memory page for the guest memory page in
response to a memory failure in the guest memory page
during the execution of the first updating instruction and
the second updating instruction, copy a content of the
host mirroring page to the new guest memory page; and

a processor to execute the first instruction and the second
instruction to store the same content to the guest
memory page and the mirroring memory page.

14. The system of claim 13, wherein the virtual machine
control logic comprises a region forming logic to combine the
guest memory updating instruction and another guest
memory updating instruction to form an atomic region that is
to be executed by the processor together.

15. The system of claim 14, wherein the virtual machine
control logic is further to undo the operations in the atomic
region in response to a memory failure in the guest memory
page and in response to the mirroring memory page not hav-
ing been updated, and allocate a new guest memory page to
replace the corrupted guest memory page and restore the
content of the new guest memory page from the mirroring
memory page.

16. The system of claim 15, wherein the virtual machine
control logic is further to update a guest-physical-to-machine
page mapping data structure and a machine-to-guest-physical
page mapping data structure in response to the corrupted
guest memory page being replaced by the new guest memory
page.

17. The system of claim 13, wherein the virtual machine
control logic is further to completion the execution of the first
updating instruction and the second updating instruction in
response to a memory failure in the guest memory page; and
copy a content of the host mirroring page to the new guest
memory page allocated for the corrupted guest memory page
to recover the content of the corrupted guest memory page in
response to the completion of the first updating instruction
and the second updating instruction.
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